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Annotation: Äàííàÿ ðàáîòà ïîñâÿùåíà àâòîìàòè÷åñêîìó îïðåäåëåíèþ
è êëàññèôèêàöèè ìîðôîëîãè÷åñêèõ ïàðàäèãì äëÿ ðóññêîãî ÿçûêà. Àáñò-
ðàêòíûå ìîðôîëîãè÷åñêèå ïàðàäèãìû âûäåëÿþòñÿ ñ ïîìîùüþ ìåòîäà
íàèáîëüøåé îáùåé ïîäïîñëåäîâàòåëüíîñòè. Îñíîâíàÿ ÷àñòü ðàáîòà ïîñâÿ-
ùåíà ïðîáëåìå âû÷èñëåíèÿ ïîëíîé ïàðàäèãìû äëÿ íåèçâåñòíîé ëåêñåìû,
äëÿ ÷åãî ïðèìåíÿåòñÿ ëèíåéíàÿ êëàññèôèêàöèÿ. Â êà÷åñòâå ïðèçíàêîâ
äëÿ êëàññèôèêàöèè èñïîëüçóþòñÿ ïðåôèêñû è ñóôôèêñû äàííîé ëåêñåìû.
Ìû ïîêàçûâàåì, ÷òî àáñòðàêòíàÿ ïàðàäèãìà ìîæåò áûòü îïðåäåëåíà ñ
òî÷íîñòüþ 77% äëÿ ñóùåñòâèòåëüíûõ è 76% äëÿ ãëàãîëîâ, â òî âðåìÿ êàê
òî÷íîñòü ïî ñëîâîôîðìàì äîñòèãàåò 93 è 89%. Â ðàáîòå ââîäèòñÿ íîâûé
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àëãîðèòì àâòîìàòè÷åñêîãî îïðåäåëåíèÿ ìîðôîëîãè÷åñêîé ïàðàäèãìû,
èñïîëüçóþùèé êîðïóñíóþ èíôîðìàöèþ. Îí ïîçâîëÿåò äîñòè÷ü êà÷åñòâà
â 82% äëÿ èìåííûõ è 86% äëÿ ãëàãîëüíûõ ïàðàäèãì, â òî âðåìÿ êàê
òî÷íîñòü ïî ñëîâîôîðìàì â îáîèõ ñëó÷àÿõ ñòàíîâèòñÿ ðàâíîé 95%.
Keywords: ìîðôîëîãè÷åñêàÿ ïàðàäèãìà, àáñòðàêòíàÿ ïàðàäèãìà, àâòîìà-
òè÷åñêîå îïðåäåëåíèå ïàðàäèãì, àâòîìàòè÷åñêàÿ êëàññèôèêàöèÿ ïàðàäèãì,
êîðïóñíîé ìåòîä îïðåäåëåíèÿ ïàðàäèãì

1 Introduction

The automatic induction and learning of morphological paradigms is very
popular in the last years. State-of-the-art works include [Ahlberg et al., 2015]
and [Nicolai et al., 2015], but several other papers are woth mentioning
([Ahlberg et al., 2014], [Durrett, DeNero, 2013]). This task has various ap-
plications, e.g. synthesis of surface word forms in machine translation and
automatic extension of morphological resources, such as wiktionary.org.
The methods developed for paradigm learning can also be used in automatic
morphological analysis, e.g. for POS-tagging or lemmatization.
The automatic induction of morphological paradigms has a long history
in the Russian linguistic tradition. The seminal work of A. A. Zaliznyak
�Russkoe imennoe slovoizmenenie� [Zaliznyak, 2002] solves exactly this prob-
lem: how the complete description of morphological in�ection could be recov-
ered from empirical data. If we reconsider the algorithm of Zaliznyak from
the computational point of view and omit the technical details speci�c to
Russian phonology, it is essentially based on the method of longest common
subsequence (LCS): the invariant part of in�ected forms of the same lexeme
is exactly their LCS. The method of LCS for automatic induction of mor-
phological paradigms was reintroduced in works of Ahlberg, Hulden et al.
([Ahlberg et al., 2014], [Ahlberg et al., 2015]). However, for the purposes of
computational lingustics, automatic induction of morphological paradigms
from in�ected tables is only the preliminary step. A more important ques-
tion is how to detect the paradigm label and hence the complete in�ectional
table using only the base form of the lexeme. This problem is solved by
machine learning techniques, using substrings of the source lexeme (e.g., its
pre�xes or su�xes) as features for the classi�er.
There are practically no works on automatic detection of morphological
paradigms for Russian: [Ahlberg et al., 2015] contains some results for noun
in�ection but the quality of the source data is too low to consider them
signi�cant. We reimplement the method of Hulden for paradigm induction
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with several technical modi�cations and use a linear classi�er to derive these
paradigms automatically from the lexeme. Our algorithm is able to recover
complete morphological paradigm both for Russian nouns and verbs with
accuracy of 77% for paradigms and 93 and 88% for word forms respectively.
We also demonstrate that the usage of corpora information improves the
percentage of correctly predicted paradigms up to 81% for nouns and 83%
for verbs.

2 Abstract paradigms

For the compressed representation of morphological in�ection we use the
notion of an abstract paradigm, introduced in [Ahlberg et al., 2014]. From
the mathematical point of view, a paradigm is a tuple of functions F =
〈f1, ..., fn〉 taking the same variables x1, . . . , xr ∈ Σ+, where fi(x1, ..., xr) op-
erates from (Σ+)r to Σ+ ([Ahlberg et al., 2014], see also [Zaliznyak, 2002]).
Here Σ is the �nite alphabet and Σ+ denotes the set of all words over this al-
phabet. Each of the functions fi corresponds to some grammatical meaning
ci, the functions in set F are arranged according to a �xed order c1, . . . , cn of
possible grammatical meanings. Literally speaking, a paradigm is a mapping
from variables to strings. We use the term �abstract paradigm� to represent
morphological paradigms formally. An abstract paradigm is a tuple of strings
containing variables x1, x2, ...xn (the variables are the same for all strings and
have the same order elsewhere) and constant fragments, which are the same
for all lexemes satisfying the given paradigm. These constant fragments vary
between the forms of the same lexeme. On the contrary, the variables have
the same value for all in�ected forms but di�er from lexeme to lexeme.
Let us explain these formal terms on a short example. Consider the in�ec-
tional tables of two Russian nouns êóñîê and ïåñîê. The paradigm function
F is the same for both of them; in the �rst case it takes the variables x1 = êóñ
and x2 = ê, in the second one � x1 = ïåñ, x2 = ê.
Given the variable values, an abstract paradigm unambigiously determines
the complete in�ectional table. When a pattern and a word form are known,
usually there is only one way to �t the pattern to the word: for example, the
word ìåøîê and the pattern x1+î+x2 yield a single combination of variable
values x1 = ìåø, x2 = ê. Nevertheless, applying the same pattern to the
word íîñîê results in two variants x1 = í, x2 = ñîê and x1 = íîñ, x2 = ê. If
we take into account several possible patterns, the number of decompositions
can grow up dramatically. However, the variables are extracted not from a
single word form, but from all the paradigm elements simultaneously, which
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Grammeme Pattern F (êóñ,ê) F (ïåñ,ê)

Nom.Sg. x1 + î + x2 êóñîê ïåñîê

Nom.Pl. x1 + x2 + è êóñêè ïåñêè

Gen.Sg. x1 + x2 + à êóñêà ïåñêà

Gen.Pl x1 + x2 + îâ êóñêîâ ïåñêîâ

Dat.Sg. x1 + x2 + ó êóñêó ïåñêó

Dat.Pl. x1 + x2 + àì êóñêàì ïåñêàì

Acc.Sg. x1 + î + x2 êóñîê ïåñîê

Acc.Pl. x1 + x2 + è êóñêè ïåñêè

Instr.Sg. x1 + x2 + îì êóñêîì ïåñêîì

Instr.Pl. x1 + x2 + àìè êóñêàìè ïåñêàìè

Pr.Sg. x1 + x2 + å êóñêå ïåñêå

Pr.Pl x1 + x2 + àõ êóñêàõ ïåñêàõ

Table 1: Abstract paradigm: an example

restricts the set of possible combinations.

2.1 Longest common subsequence

Consider again the abstract representation of morphological paradigms. If
we substitute strings of letters for the variables, these strings form a common
subsequence of all generated words. In order to capture as much common
material as possible, that subsequence should be the longest one. Therefore,
the problem of paradigm detection has been reduced to the task of �nding
the longest common subsequence. We are not going to discuss the linguis-
tic relevance of this approach and use it only as an empirical procedure.
However, several important questions emerge:

1. How to calculate the longest common subsequence algorithmically?

2. What subsequence to select when several subsequences have the same
length?

3. How to extract variable values when the LCS is known?

For the �rst task we use �nite automata. It is straightforward to construct
an automaton recognizing all the common subsequences of given strings and
then extract the longest word this automaton accepts (we omit algorithmi-
cal details). Although, this automaton could be nondetermenistic and an
equivalent deterministic state automaton may have much larger number of
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states (up to 2n where n is the number of states of initial nondeterministic
automaton). To prevent this exponential growth we bound the length of
gaps between the consequent letters of the subsequence, as well as the gap
before the �rst letter of the subsequence. This limitation is also justi�ed
from the linguistic point of view: consider two verb forms ðàçìåñòèòüñÿ
and ðàçìåùóñü, their LCS ðàçìåñ has length 6. However, ñ in the LCS is an
artifact of the method, not an element of common stem. Besides, alterations
like ñò/ù are among the phenomena which are di�cult to capture by LCS
algorithm.
The construction of �nite automata recognizing all common subsequences
for the words ìîòîê and îêîò is illustrated below. The edges contain not
only the symbols, but also the positions of these symbols in the words. This
trick allows to simplify the extraction of an abstract paradigm from the LCS.

00

21

5234

43

 (4,1)

т (2,3)

о ((1,3)(2,0))

к (4,1)
т (2,3)

о (3,2)

Figure 1: DSA for common subsequences of the word ìîòîê and îêîò

In the example above there are 3 longest common subsequences: îî, îê, îò.
Possible variants of their positioning are shown in the table below.

LCS LCS positioning variants

î-î ìîòîê, îêîò
î-ò ìîòîê, îêîò
î-ò ìîòîê, îêîò
î-ê ìîòîê, îêîò
î-ê ìîòîê, îêîò

Table 2: LCS for the words ìîòîê and îêîò

Already in this arti�cial example there are multiple variants for LCS position-
ing. The same problem emerges in practice: consider a partial in�ectional
table of the word ïåñîê. There are two candidates for the LCS: ïåñ-î and
ïåñ-ê both of length 4.
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ïåñîê Nom.Sg.

ïåñêîâ Gen.Pl.

ïåñêîì Instr.Sg.

ïåñîê Nom.Sg.

ïåñêîâ Gen.Pl.

ïåñêîì Instr.Sg.

Table 3: Ambigious LCS positioning: an example

We use two euristics for disambiguation: the �rst selects the variant with
the minimal number of variables (variables are the maximal contiguous parts
of the LCS). However, this euristic does not give us a solution here: both
subsequences consist of two variables. Then we apply our second euristic:
choose the variant with the least total length of gaps. Then the variant
ïåñîê-ïåñêîâ-ïåñêîì is preferred, since it leads to a single gap of length
1 while its counterpart generates two such gaps (of total length 2).

3 Automatic detection of paradigms

In the previous section we have discussed the algorithm for morphological
paradigms induction. However, it is not a central problem of the paper;
we are mainly interested in the automatic detection of such paradigms for
unknown words. We consider the following task: given an unknown word of a
known part-of-speech (say, a noun àðêà), determine its complete in�ectional
table. The algorithm selects one of many potential variants, several of which
are listed in Table 4.

Paradigm Variables

1#1+û#1+à#1+îâ#1+ó#1+àì#1#1+û#1+îì#1+àìè#1+å#1+àõ 1=àðêà
1+à#1+à#1+û#1#1+å#1+àì#1+ó#1+û#1+îé#1+àìè#1+å#1+àõ 1 = àðê
1#1+û#1+à#1+îâ#1+ó#1+àì#1#1+à#1+îâ#1+àìè#1+å#1+àõ 1 = àðêà

1+2+à#1+2+è#1+2+è#1+î+2#1+2+å#1+2+àì#1+2+ó#1+2+è

#1+2+îé#1+2+àìè#1+2+å#1+2+àõ

1 = àð, 2 = ê

Table 4: Multiple possible paradigms for the word àðêà

We may attempt to recover a correct paradigm using deterministic rules
such as �when a noun ends with à then this à is a �ection, not a part of
a stem� (counterexample: áàêêàðà) and if such word ends with �Cêà� for
some consonant C then î is inserted between C and ê in genitive plural
(counterexample: ëàñêà ). However, all such rules have counterexamples
and their manual design is a very labour-intensive task. Therefore we have
decided to learn in�ectional patterns automatically applying algorithms of
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machine learning. We use as features all the su�xes1 whose length does
not exceed the given maximum (say, 5). The su�xes are encoded as binary
indicators; for example, the word ó÷èòåëü is described by a binary vector
with �ve nonzero elements, corresponding to su�xes -ü, -ëü, -åëü etc. (see
Table 5 below). The absense of a su�x in the training set is encoded by a
special placeholder, in this case longer su�xes are not taken into account
since they were not observed in the training set either. For example, is the
su�x -ëü was preceded only by å in the training set, than both the words
ìîðàëü and ôàñîëü are encoded by vector containing three ones for su�xes
-ü, -ëü and !ëü where ! denotes an unobserved letter.

$à $ê $êà $ëà $èê $ðêà . . .

àðêà 1 0 1 0 0 1 . . .
øêîëà 1 0 0 1 0 0 . . .
áëèê 0 1 0 0 1 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

Table 5: Feature encoding scheme

Since pre�xes carry no information about noun morphology, we do not use
them as features for noun paradigm prediction. In the case of verbs, con-
versely, they can be used to determine verb aspect. If d is the maximal
length of su�xes used as features, then the number of possible features
grows roughly exponentially with d and may reach 20000 for d = 5. To
reduce training time and remove noisy features we retain only a �xed per-
centage of the most unambigious features. As the measure of ambiguity for
the feature fj we take max

i
P (c(L) = ci|fj(L) = 1) � the probability of

the most frequent class provided fj is present. We also remove the features
which appear less than 3 times in the training set.

4 Evaluation of paradigm classi�er

We evaluated our approach on Russian verbs and nouns. For both tasks we
took 5000 most frequent words of the corresponding part of speech from the
dictionary of Lyashevskaya and Sharo� ([Lyashevskaya,Sharo�, 2009]). We
automatically downloaded complete in�ectional tables from the Wiktionary

1we use the term �su�x� (�pre�x�) for an arbitrary substring in the end (in the begin-
ning) without any regard to morphology
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(ru.wiktionary.org). For nouns the tables contained at most 12 items for
6 cases and 2 numbers (several cells in the paradigm could be empty, e.g.
for pluralia tantum). Sometimes the cell contained two values (for example,
Instr.Sg. of �rst declension nouns), in this case we always chose only the
�rst form. We extracted 239 abstract paradigms for noun declension, 69 of
them contain more than 5 examples and 108 � only a single example. 10
most frequent paradigms are listed in 11 of the Appendix.
In the case of verbs typical Wikitionary form for imperfect aspect con-
tains 21 simple forms (https://ru.wiktionary.org/wiki/%D0%B6%D0%B5%
D0%BB%D0%B0%D1%82%D1%8C) including in�nitive and omitting composite fu-
ture form and empty cells. For paradigm induction we used only 13 of them:
6 present forms, 4 past, 2 forms of the imperative and the basic in�nitive
form. Even in such restricted form verb conjugation demonstrate more ir-
regularities then noun declension, so the sample of 5000 verbs contains 305
paradigms with 120 of them having 5 or more representatives and 92 � a
single representative. 10 most frequent paradigms are shown in Table 12. We
bound maximal gap length by 2, therefore the algorithm does not recoginze
ñ as part of the LCS in the examples like èãðàòüñÿ/èãðàåøüñÿ/èãðàéòåñü.
In our experiments we randomly separated the sample on 2 equal halfs, using
one for testing and the other one for training. The results were averaged for
5 random splits. In the case of nouns we did not use pre�xes as features and
bound su�x length d by 3, 5 or 7. The percentage p of selected features was
0.10, 0.25 or 0.5. In the case of verbs we calculated the su�x length without
the re�exive a�xes -ñÿ and -ñü. We also used the pre�x features with the
maximal length of 2 for verb conjugation. To predict paradigm labels we used
the logistic regression classi�er from sklearn package [Pedregosa et al., 2011],
which itself uses the LIBLINEAR library [Fan et al., 2008]. The results are
presented in Table 6 and Table 7. We report both per-paradigm (the percent-
age of correctly predicted abstract paradigms) and per-form (the fraction of
correct word forms) accuracy.

0.1 0.25 0.5

3 77.19 93.47 77.26 93.47 77.25 93.47
5 77.38 93.50 77.32 93.48 77.32 93.48
7 77.44 93.45 77.35 93.43 77.35 93.43

Table 6: Prediction accuracy for noun paradigms classi�cation

Since the result of nouns is practically independent from the classi�er pa-

8

ru.wiktionary.org
https://ru.wiktionary.org/wiki/%D0%B6%D0%B5%D0%BB%D0%B0%D1%82%D1%8C
https://ru.wiktionary.org/wiki/%D0%B6%D0%B5%D0%BB%D0%B0%D1%82%D1%8C


rameters, we �x p = 0.1 and d = 5 in future experiments. We use the same
setting for the verbs task, however, in this case the impact of feature length
is more signi�cant.

0.1 0.25 0.5

3 51.41 79.96 51.41 79.96 51.41 79.94
5 76.30 88.83 76.09 88.62 75.94 88.62
7 77.06 88.36 78.01 89.35 77.96 89.38

Table 7: Prediction accuracy for verb paradigms classi�cation

We also study how the prediction quality changes with the size of the training
set. When there is little training data available, a lemma may not �t to all
in�ection patterns observed in training phase (say, a verb ends with -òè and
all the in�nitives in the training set ended with -òü, -òüñÿ or -÷ü). In such
cases we allow the system consult a complete list of paradigms, no matter
whether they were observed in training. The dependence between training
data size and system performance is shown in Table 8.

Task
Training data fraction

0.1 0.25 0.5 0.6 0.7 0.8

Nouns
71.76 75.05 77.38 77.95 77.88 77.40
91.15 92.32 93.50 93.70 93.77 93.84

Verbs
65.50 71.50 76.30 77.49 77.60 77.56
83.83 86.27 88.83 89.36 89.41 89.50

Table 8: Train data percentage and performance quality

4.1 Analysis of results

It is uninformative to compare results for di�erent languages and even for
di�erent datasets. As we know, the only experiment on paradigm detection
for Russian nouns was conducted by Ahlberg et al. in [Ahlberg et al., 2015],
showing per-table accuracy of 66% and per-form accuracy of 89%. However,
they used data collected from Freeling ([Padro, Stanilovsky, 2012]), which is
of much lower quality than ours. They also used 5-fold cross-validation for
performance evaluation, which means that 80% was left for training instead
of only 50% in our experiment. However, the results for other languages,
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such as Catalan, French or Italian, reported in [Ahlberg et al., 2015] are
much higher with per-table accuracy of over 90%. We claim that corpus-free
methods are incapable of reaching comparable accuracy on Russian data due
to objective linguistic factors.
The are two main sources of errors in the case of noun paradigm prediction:
the �rst is animacy/unanimacy a�ecting the forms of accusative, the second
is -à/-û in the form of Nom.Pl. In both cases the correct category does
not depend on the surface form (consider âîë÷îíîê vs áî÷îíîê or ãîëîñ
vs êîëîñ). The system also fails to discriminate between masculine and
feminine nouns ending with ü (ìîçîëü vs êîðîëü). It is obvious that these
ambiguities cannot be resolved without corpus statistics. We discuss this
question in details in the next section.
For verbs the problem is more subtle. Often the mistake happens for the
forms of imperative mood, for example, *òðåâîæè is predicted instead of
òðåâîæü or *ïîõèòè for ïîõèòü. In such cases the forms or indicative
mood are usually correct. Another common source of mistakes are å/¼ in
verb �ections (compare õëîïíóòü and òîëêíóòü). In this case the �ection
depends on the stress position in the in�nitive form, however, we removed the
stress signs in our data since they are marked inconsistently in Wiktionary it-
self. Such mistakes a�ect only several forms (imperative or third person pre-
sens). Errors of the second type touch practically all forms of the paradigm.
It often happens for the verbs ending on -àòü (âåí÷àòü vs êðè÷àòü). The
system also fails in the case of phonetic alterations (óíèçèòü/óíèæó), es-
pecially when they happen inside the stem (çâàòü/çîâó or ñëàòü/øëþ).
Summarizing, the spectrum of possible errors for Russian verb paradigm
prediction is wider than for Russian nouns, which explains lower per-form
quality in the verb prediction task. However, in both cases more training
data does not help, as shown in Table 8. We consider the sources of additional
information in the next section.

5 Corpus-based methods of paradigm predictions

In this section we experiment with other features which might be helpful
for automatic paradigm detection. In the verb paradigm task incorrectly
predicted forms sometimes violate the rules of Russian phonology like in
*îñóùåñòâüñÿ or *èñ÷åæü for èñ÷åçíè. These incorrect forms might be
rejected if we extend the model by phonological features. This idea is realized
as following:
First, we train a character ngram model on the training data. Then we
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augment the algorithm with second classi�er on the top of the �rst. It
takes as features logarithmic probabilities predicted by the classi�er on the
�rst level as well as the scores of the language model. If the basic clas-
si�er has predicted ci as paradigm label for the lemma L, we generate all
the forms wi,1, . . . , wi,m of this lexeme according to the paradigm; then we

take as language model score the averaged sum s(L, ci) =

m∑
j=1

− logPlm(wi,j)

m
where Plm(wi,j) is the probability of wordform wi,j according to character
ngram model. We test two ways of accomodating the language model log-
scores: in the �rst case we use them as features of the linear classi�er. In
the second variant we used language model scores only for �ltering, dis-
carding a paradigm ci if its score s(L, ci) is greater than s0 + α where s0
is the lowest value among s(L, ci) and α is some rede�ned constant. We
used 5-gram language models trained on the set of word forms from the
training data and smoothed the model counts using Witten-Bell smoothing
([Chen,Goodman, 1996]. The results for Nouns and Verbs tasks are pre-
sented in Table 9, we used p = 0.1 and d = 5 for feature fraction and su�x
length in all trials, the percentage of training data was again 0.5.

Task No character scores Character scores
as features

Character scores
as �lters

Nouns 77.38 93.50 77.42 93.50 77.36 93.42
Verbs 76.30 88.86 80.37 90.92 77.01 89.35

Table 9: Using character model for paradigm prediction

We observe that language model has no e�ect for the Nouns task. On
the contrary, on the verbs task �ltering already signi�cally improves perfor-
mance, while combining language model scores with initial paradigm proba-
bilities increases prediction quality by 3 percents more. It is easy to explain
since the main source of errors for nouns was the confusion between ani-
mate/inanimate nouns where both the predictions are phonologically plau-
sible. Conversely, in the Verbs task the mispredicted forms in imperative
like *îñóùåñòâüñÿ has low probability according to character ngram mod-
els which allows the system to exclude them.
The main contribution of our paper is corpora-based algorithm for paradigm
prediction. Again, we accomodate corpora counts together with the loga-
rithmic probabilities predicted by the basic classi�er on the second stage of
our algorithm. More precisely, after generating the word forms w1, . . . , wm
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of the lexeme L according to hypothetic paradigm cj , we calculate the cor-

pus score by the formula C =
m∑
j=1
− logC(wj), where C(wj) is the number of

times wj occurs in the corpora. All counts are incremented by 1 to avoid zero
probabilities. This method resembles the method of [Ahlberg et al., 2014, ],
however, we make one modi�cation to deal with homonymy: if a word form
occurs two times in the paradigm (for example, in nominative and genitive),
then we divide all the corpora counts of it by 2. Without this modi�cation,
this algorithm favours invariable nouns.
However, we are still unable to discriminate between unanimate and animate
nouns by our algorithm since the set of word forms is the same in both cases.
The only di�erence is that genitive forms of animate nouns would be more
frequent than the ones of unanimate since they appear in accusative also.
To capture this di�erence we should measure the similarity between the ex-
pected distribution of case forms and the observed proportion of their counts.
Let P = [p1, . . . , pm] be the expected probabilies of di�erent word forms ac-
cording to their grammemes and N = [N1, . . . , Nm] be their observed counts.
We normalize the empirical distribution by its sum N =

∑
j
Nj , obtaining

the empirical probability distribution Q = [q1, . . . , qm] where qj =
Nj

N . Then
the di�erence score equals

D(N ,P) =
∑
j

qj log
qj
pj
· logN

Note that this measure is simply Kullback-Leibler divergence between Q
and P multiplied by the log count of the given lexeme. The expected form
counts were collected in the training phase separately for each paradigm. The
results for corpora-based paradigm prediction are shown in Table 10. We
used the counts from Russian National Corpora available on ruscorpora.

ru/corpora-freq.html.

Task No corpora Corpora counts as
features

Counts and diver-
gences as features

Nouns 77.38 93.50 80.21 95.34 82.73 95.67
Verbs 76.30 88.83 84.30 93.81 83.66 93.73

Table 10: Using character model for paradigm prediction

We observe that using corpora counts indeed leads to a substantial gain
in performance in both tasks. However, in the case of verbs most of the
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advantage is obtained from corpora counts themselves, using similarity scores
slightly worsens performance. On the Nouns task similarity scores, on the
contrary, leads to a further improvement in per-table accuracy. Indeed, the
most di�cult problem for nouns is animacy/unanimacy di�erentiation where
absolute counts are useless. In the verb tasks, conversely, homonimy plays
no role, therefore, similarity scores are redundant and make the data more
noisy.
Inspecting remaining incorrect predictions, we found that in the Verbs task
they are mainly caused by wrong imperative form generation. Often corpus
counts cannot resolve this problem because imperative forms are not very
frequent for many verbs: both êðîâîòî÷è and *êðîâîòî÷ü do not appear in
the RNC counts. Often corpora features are not powerful enough to overcome
the gap caused by �rst level classi�er. For example, for the verb ëãàòü the
correct paradigm has probability 0.01 after the �rst stage. Joint classi�er
raises it up to 0.3, however, it is too low to rank this hypothesis on the top.
The same problem arises in the task of noun paradigm prediction: for most
of the erroneous predictions the correct paradigm was excluded already by
the basic classi�er or obtained an extremely low probability.
We also combined character ngram scores with the corpora-based classi�er,
which improved the performance further. For the Nouns task the gain was
marginal (82.80% instead of 82.73% for per-table accuracy), however, the ac-
curacy of paradigm prediction for verbs achieved 86.51% instead of 84.30%.
The per-form accuracy also increased signi�cantly, reaching 95.66% in com-
parison with 93.81%.

6 Conclusion

We have developed a system for automatic paradigm induction and pre-
diction. Our algorithm of paradigm induction is based on the method of
longest common subsequence. To predict paradigms automatically we apply
a logistic regression classi�er using su�x and pre�x features. This classi�er
achieves accuracy of 77% on Russian nouns and 76% on Russian verbs in
paradigm prediction task, the percentage of correctly predicted forms is 93%
and 88% respectively. We have also designed a corpora-based algorithm of
paradigm prediction using the basic classi�er on its �rst stage. This improves
the accuracy of paradigm prediction to 81% on nouns and 84% on verbs, per-
form accuracy reaches 95 and 93%. These results are substantially better
then previously achieved for Russian in [Ahlberg et al., 2015] (the authors
of that work used another dataset and experiment setting).
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We plan to improve our results further by using corpora information more
extensively. Our results show that taking into account relative frequencies of
grammemes enhances the quality of corpora-based methods. Therefore mod-
elling the distribution of grammemes more accurately should leave to further
improvement. For this goal we plan to use morphologically disambiguated
corpora. Another improvement could be achieved by grouping together the
corpus statistics for the words of presumably the same paradigm.
Our results could be used for automatic morphological analysis and synthe-
sis in such tasks as POS-tagging or lemmatization. Modern techniques of
lemmatization such as used in [Jonjejan, Dalianis, 2009] also use the LCS
approach but apply it to each word form separately without using full in�ec-
tional table. Our method incorporates information from the whole paradigm,
therefore it could potentially improve state-of-the-art algorithms of morpho-
logical analysis for Russian. Since our system does not predict the best
in�ection table only, but returns the probabilities of possible paradigms, it
can be used as a component of a joint classi�er, taking into account context
model probabilities as well as single word scores. Using context informa-
tion together with su�x/pre�x features could also help to determine word
part-of-speech, which is a preliminary step for our algorithm.
This task is especially important for Web texts, which contain numerous out-
of-vocabulary words whose in�ection cannot be determined by dictionary-
based methods. We plan to test our approach for morphological processing
of social media texts in future studies.
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7 Appendix

No Abstract paradigm Count Example

1 1#1+û#1+à#1+îâ#1+ó#1+àì
#1#1+û#1+îì#1+àìè#1+å#1+àõ

959 0=àáîðò,
1=àáîðò

2 1+å#1+ÿ#1+ÿ#1+é#1+þ#1+ÿì
#1+å#1+ÿ#1+åì#1+ÿìè#1+è#1+ÿõ

622 0=Åâàíãåëèå,
1=Åâàíãåëè

3 1+à#1+û#1+û#1#1+å#1+àì
#1+ó#1+û#1+îé#1+àìè#1+å#1+àõ

444 0=àâòîìàøèíà,
1=àâòîìàøèí

4 1+ü#1+è#1+è#1+åé#1+è#1+ÿì
#1+ü#1+è#1+üþ#1+ÿìè#1+è#1+ÿõ

330 0=àêòèâíîñòü,
1=àêòèâíîñò

5 1+ÿ#1+è#1+è#1+é#1+è#1+ÿì
#1+þ#1+è#1+åé#1+ÿìè#1+è#1+ÿõ

270 0=àâàðèÿ,
1=àâàðè

6 1#1+û#1+à#1+îâ#1+ó#1+àì
#1+à#1+îâ#1+îì#1+àìè#1+å#1+àõ

249 0=àáîíåíò,
1=àáîíåíò

7 1+2+à#1+2+è#1+2+è#1+î+2
#1+2+å#1+2+àì#1+2+ó#1+2+è
#1+2+îé#1+2+àìè#1+2+å#1+2+àõ

239 0=àðêà,
1=àð,2=ê

8 1#1+è#1+à#1+îâ#1+ó#1+àì
#1#1+è#1+îì#1+àìè#1+å#1+àõ

222 0=àíàëîã,
1=àíàëîã

9 1#1+è#1+à#1+îâ#1+ó#1+àì
#1+à#1+îâ#1+îì#1+àìè#1+å#1+àõ

174 0=àêàäåìèê,
1=àêàäåìèê

10 1+î#1+à#1+à#1#1+ó#1+àì
#1+î#1+à#1+îì#1+àìè#1+å#1+àõ

143 0=àãåíòñòâî,
1=àãåíòñòâ

Table 11: Most frequent abstract paradigms for Russian nouns
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No Abstract paradigm Count Example

1 1+òü#1+þ#1+åøü#1+åò#1+åì#1+åòå#1+þò
#1+ë#1+ëà#1+ëî#1+ëè#1+é#1+éòå

1316 0=àðåñòîâûâàòü,
1=àðåñòîâûâà

2 1+òüñÿ#1+þñü#1+åøüñÿ#1+åòñÿ,
#1+åìñÿ#1+åòåñü#1+þòñÿ#1+ëñÿ,
#1+ëàñü#1+ëîñü#1+ëèñü#1+éñÿ#1+éòåñü

568 0=áàðàõòàòüñÿ,
1=áàðàõòà

3 1+îâàòü#1+óþ#1+óåøü#1+óåò
#1+óåì#1+óåòå#1+óþò#1+îâàë
#1+îâàëà#1+îâàëî#1+îâàëè#1+óé#1+óéòå

302 0=àãèòèðîâàòü,
1=àãèòèð

4 1+èòü#1+þ#1+èøü#1+èò#1+èì#1+èòå
#1+ÿò#1+èë#1+èëà#1+èëî#1+èëè#1+è#1+èòå

192 0=áëàãîäàðèòü,
1=áëàãîäàð

5 1+èòü#1+ó#1+èøü#1+èò#1+èì#1+èòå
#1+àò#1+èë#1+èëà#1+èëî#1+èëè#1+è#1+èòå

117 0=âåðøèòü,
1=âåðø

6 1+èòü#1+ëþ#1+èøü#1+èò#1+èì#1+èòå
#1+ÿò#1+èë#1+èëà#1+èëî#1+èëè#1+è#1+èòå

116
0=áëàãîñëîâèòü,
1=áëàãîñëîâ

7 1+èòüñÿ#1+þñü#1+èøüñÿ#1+èòñÿ
#1+èìñÿ#1+èòåñü#1+ÿòñÿ#1+èëñÿ
#1+èëàñü#1+èëîñü#1+èëèñü#1+èñü#1+èòåñü

104 0=âàëèòüñÿ,
1=âàë

8 1+äèòü#1+æó#1+äèøü#1+äèò
#1+äèì#1+äèòå#1+äÿò#1+äèë
#1+äèëà#1+äèëî#1+äèëè#1+äè#1+äèòå

89 0=áðîäèòü,
1=áðî

9 1+îâàòüñÿ#1+óþñü#1+óåøüñÿ#1+óåòñÿ#1+óåìñÿ
#1+óåòåñü#1+óþòñÿ#1+îâàëñÿ#1+îâàëàñü
#1+îâàëîñü#1+îâàëèñü#1+óéñÿ#1+óéòåñü

71 0=àäàïòèðîâàòüñÿ,
1=àäàïòèð

10 1+óòü#1+ó#1+¼øü#1+¼ò#1+¼ì#1+¼òå#1+óò
#1+óë#1+óëà#1+óëî#1+óëè#1+è#1+èòå

66 0=áëåñíóòü,
1=áëåñí

Table 12: Most frequent abstract paradigms for Russian verbs
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