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1 Introduction

The automatic induction and learning of morphological paradigms is very
popular in the last years. State-of-the-art works include [Ahlberg et al., 2015]
and [Nicolai et al., 2015], but several other papers are woth mentioning
([Ahlberg et al., 2014], [Durrett, DeNero, 2013]). This task has various ap-
plications, e.g. synthesis of surface word forms in machine translation and
automatic extension of morphological resources, such as wiktionary.org.
The methods developed for paradigm learning can also be used in automatic
morphological analysis, e.g. for POS-tagging or lemmatization.

The automatic induction of morphological paradigms has a long history
in the Russian linguistic tradition. The seminal work of A. A. Zaliznyak
“Russkoe imennoe slovoizmenenie” [Zaliznyak, 2002] solves exactly this prob-
lem: how the complete description of morphological inflection could be recov-
ered from empirical data. If we reconsider the algorithm of Zaliznyak from
the computational point of view and omit the technical details specific to
Russian phonology, it is essentially based on the method of longest common
subsequence (LCS): the invariant part of inflected forms of the same lexeme
is exactly their LCS. The method of LCS for automatic induction of mor-
phological paradigms was reintroduced in works of Ahlberg, Hulden et al.
([Ahlberg et al., 2014], [Ahlberg et al., 2015]). However, for the purposes of
computational lingustics, automatic induction of morphological paradigms
from inflected tables is only the preliminary step. A more important ques-
tion is how to detect the paradigm label and hence the complete inflectional
table using only the base form of the lexeme. This problem is solved by
machine learning techniques, using substrings of the source lexeme (e.g., its
prefixes or suffixes) as features for the classifier.

There are practically no works on automatic detection of morphological
paradigms for Russian: [Ahlberg et al., 2015] contains some results for noun
inflection but the quality of the source data is too low to consider them
significant. We reimplement the method of Hulden for paradigm induction


wiktionary.org

with several technical modifications and use a linear classifier to derive these
paradigms automatically from the lexeme. Our algorithm is able to recover
complete morphological paradigm both for Russian nouns and verbs with
accuracy of 77% for paradigms and 93 and 88% for word forms respectively.
We also demonstrate that the usage of corpora information improves the
percentage of correctly predicted paradigms up to 81% for nouns and 83%
for verbs.

2 Abstract paradigms

For the compressed representation of morphological inflection we use the
notion of an abstract paradigm, introduced in [Ahlberg et al., 2014]. From
the mathematical point of view, a paradigm is a tuple of functions F =
(f1,..., fn) taking the same variables x1,...,z, € X7, where f;(z1, ..., ;) op-
erates from (X1)" to ©1 ([Ahlberg et al., 2014], see also [Zaliznyak, 2002]).
Here X is the finite alphabet and X1 denotes the set of all words over this al-
phabet. Each of the functions f; corresponds to some grammatical meaning
¢;, the functions in set F' are arranged according to a fixed order ¢y, ..., ¢, of
possible grammatical meanings. Literally speaking, a paradigm is a mapping
from variables to strings. We use the term “abstract paradigm” to represent
morphological paradigms formally. An abstract paradigm is a tuple of strings
containing variables x1, g, ...z, (the variables are the same for all strings and
have the same order elsewhere) and constant fragments, which are the same
for all lexemes satisfying the given paradigm. These constant fragments vary
between the forms of the same lexeme. On the contrary, the variables have
the same value for all inflected forms but differ from lexeme to lexeme.

Let us explain these formal terms on a short example. Consider the inflec-
tional tables of two Russian nouns xycox and necox. The paradigm function
Fis the same for both of them; in the first case it takes the variables z1 = xyc
and x9 = %, in the second one — x1 = nec, xo = XK.

Given the variable values, an abstract paradigm unambigiously determines
the complete inflectional table. When a pattern and a word form are known,
usually there is only one way to fit the pattern to the word: for example, the
word mewor and the pattern x1+0+x9 yield a single combination of variable
values 1 = wew, x9 = %. Nevertheless, applying the same pattern to the
word wocox results in two variants x1 = u, o = cox and x1 = noc, v9 = k. If
we take into account several possible patterns, the number of decompositions
can grow up dramatically. However, the variables are extracted not from a
single word form, but from all the paradigm elements simultaneously, which



Grammeme Pattern F(xyc,x) | F(nec,x)
Nom.Sg. 1+ 0+ a2 KYCOK ITECOK
Nom.Pl. T1+ 29+ 1 KYCKHA IECKU
Gen.Sg. r1+xo+a KyCKa mecKa

Gen.Pl T, + x9 + OB KYCKOB [IECKOB
Dat.Sg. 1+ a2ty KYCKY IeCKy
Dat.Pl. r1 + 22 +am KyCcKaM ecKam
Acc.Sg. x1+ 0+ x2 KYCOK IIECOK
Acce.PL T1+xTo+m KYCKH IIeCKNU
Instr.Sg. T+ To + oM KYCKOM IIECKOM
Instr.Pl. T1 4+ T2 +aMu | KyCKaMH | IIeCKaMu

Pr.Sg. r1+x9+ e KYCKe ImecKe

Pr.Pl T1 + x9 + ax KYCKaxX IIECKaX

Table 1: Abstract paradigm: an example

restricts the set of possible combinations.

2.1 Longest common subsequence

Consider again the abstract representation of morphological paradigms. If
we substitute strings of letters for the variables, these strings form a common
subsequence of all generated words. In order to capture as much common
material as possible, that subsequence should be the longest one. Therefore,
the problem of paradigm detection has been reduced to the task of finding
the longest common subsequence. We are not going to discuss the linguis-
tic relevance of this approach and use it only as an empirical procedure.
However, several important questions emerge:

1. How to calculate the longest common subsequence algorithmically?

2. What subsequence to select when several subsequences have the same
length?

3. How to extract variable values when the LCS is known?

For the first task we use finite automata. It is straightforward to construct
an automaton recognizing all the common subsequences of given strings and
then extract the longest word this automaton accepts (we omit algorithmi-
cal details). Although, this automaton could be nondetermenistic and an
equivalent deterministic state automaton may have much larger number of



states (up to 2™ where n is the number of states of initial nondeterministic
automaton). To prevent this exponential growth we bound the length of
gaps between the consequent letters of the subsequence, as well as the gap
before the first letter of the subsequence. This limitation is also justified
from the linguistic point of view: consider two verb forms pesmecmumoca
and pasmewgyco, their LCS pasamec has length 6. However, ¢ in the LCS is an
artifact of the method, not an element of common stem. Besides, alterations
like ¢m/wy are among the phenomena which are difficult to capture by LCS
algorithm.

The construction of finite automata recognizing all common subsequences
for the words momox and oxom is illustrated below. The edges contain not
only the symbols, but also the positions of these symbols in the words. This
trick allows to simplify the extraction of an abstract paradigm from the LCS.

0((1,3)2,0)

Figure 1: DSA for common subsequences of the word momox and oxom

In the example above there are 3 longest common subsequences: oo, ox, om.
Possible variants of their positioning are shown in the table below.

LCS | LCS positioning variants
0-0 | MOTOK, OKOT
0-T | MOTOK, OKOT
0-T | MOTOK, OKOT
0-K | MOTOK, OKOT
0-K | MOTOK, OKOT

Table 2: LCS for the words momox and oxom

Already in this artificial example there are multiple variants for LCS position-
ing. The same problem emerges in practice: consider a partial inflectional
table of the word necox. There are two candidates for the LCS: nec-o and
nec-x both of length 4.



necok | Nom.Sg. necok | Nom.Sg.

meckos | Gen.PL neckoB | Gen.Pl
meckowm | Instr.Sg. meckowm | Instr.Sg.

Table 3: Ambigious LCS positioning: an example

We use two euristics for disambiguation: the first selects the variant with
the minimal number of variables (variables are the maximal contiguous parts
of the LCS). However, this euristic does not give us a solution here: both
subsequences consist of two variables. Then we apply our second euristic:
choose the variant with the least total length of gaps. Then the variant
mecoK-mecKoB-mecKouM is preferred, since it leads to a single gap of length
1 while its counterpart generates two such gaps (of total length 2).

3 Automatic detection of paradigms

In the previous section we have discussed the algorithm for morphological
paradigms induction. However, it is not a central problem of the paper;
we are mainly interested in the automatic detection of such paradigms for
unknown words. We consider the following task: given an unknown word of a
known part-of-speech (say, a noun apxa), determine its complete inflectional
table. The algorithm selects one of many potential variants, several of which
are listed in Table

Paradigm Variables

1# 1+ m# 1+a# 1+oB#H 1+ y#1+am# 1 # 1+b1# 1 +om# 1 +amu# 1+e# 14+ax 1=apxa
1+a#l+a#l+o#l#1+e#1+am#l+y# 1+ m#1+oit# 1+amudt 1 +e#1+ax | 1 = apk

1# 1+ m# 1 +a# 1+os# 1+ y#1+am# 1# 1+a# 1+oB# 1 +amu# 1+e#1+ax 1 = apka
1424 a# 1424 n# 1+ 24 140+ 24 14+-2-Fe# 12+ aM# 142+ y #4142+ l=ap,2=x
H#1+2+oii#1+2+amu# 1+2+e#1+2+ax

Table 4: Multiple possible paradigms for the word apxa

We may attempt to recover a correct paradigm using deterministic rules
such as “when a noun ends with a then this a is a flection, not a part of
a stem” (counterexample: 6Gaxkapa) and if such word ends with “Cka” for
some consonant C' then o is inserted between C' and k in genitive plural
(counterexample: sacka ). However, all such rules have counterexamples
and their manual design is a very labour-intensive task. Therefore we have
decided to learn inflectional patterns automatically applying algorithms of



machine learning. We use as features all the sufﬁxesE] whose length does
not exceed the given maximum (say, 5). The suffixes are encoded as binary
indicators; for example, the word yuumeas is described by a binary vector
with five nonzero elements, corresponding to suffixes -», -4v, -eav etc. (see
Table [5| below). The absense of a suffix in the training set is encoded by a
special placeholder, in this case longer suffixes are not taken into account
since they were not observed in the training set either. For example, is the
suffix -u6 was preceded only by e in the training set, than both the words
mopaaw and ¢gacoawv are encoded by vector containing three ones for suffixes
-b, -ab and /b where ! denotes an unobserved letter.

$a | $x | $xa | $ma | $ux | $pka

apka 1 0 1 0 0 1
mkoaa | 1 0 0 1 0 0
Ok 0 1 0 0 1 0

Table 5: Feature encoding scheme

Since prefixes carry no information about noun morphology, we do not use
them as features for noun paradigm prediction. In the case of verbs, con-
versely, they can be used to determine verb aspect. If d is the maximal
length of suffixes used as features, then the number of possible features
grows roughly exponentially with d and may reach 20000 for d = 5. To
reduce training time and remove noisy features we retain only a fixed per-
centage of the most unambigious features. As the measure of ambiguity for
the feature f; we take max P(c(L) = ¢|f;j(L) = 1) — the probability of
the most frequent class prlovided f;j is present. We also remove the features
which appear less than 3 times in the training set.

4 Evaluation of paradigm classifier

We evaluated our approach on Russian verbs and nouns. For both tasks we
took 5000 most frequent words of the corresponding part of speech from the
dictionary of Lyashevskaya and Sharoff (|[Lyashevskaya,Sharoff, 2009]). We
automatically downloaded complete inflectional tables from the Wiktionary

Lwe use the term “suffix” (“prefix”) for an arbitrary substring in the end (in the begin-
ning) without any regard to morphology



(ru.wiktionary.org). For nouns the tables contained at most 12 items for
6 cases and 2 numbers (several cells in the paradigm could be empty, e.g.
for pluralia tantum). Sometimes the cell contained two values (for example,
Instr.Sg. of first declension nouns), in this case we always chose only the
first form. We extracted 239 abstract paradigms for noun declension, 69 of
them contain more than 5 examples and 108 — only a single example. 10
most frequent paradigms are listed in [11] of the Appendix.

In the case of verbs typical Wikitionary form for imperfect aspect con-
tains 21 simple forms (https://ru.wiktionary.org/wiki/%D0%B6%D0%B5%
D0%BB%D0%B0%D1%82%D1%8C) including infinitive and omitting composite fu-
ture form and empty cells. For paradigm induction we used only 13 of them:
6 present forms, 4 past, 2 forms of the imperative and the basic infinitive
form. Even in such restricted form verb conjugation demonstrate more ir-
regularities then noun declension, so the sample of 5000 verbs contains 305
paradigms with 120 of them having 5 or more representatives and 92 — a
single representative. 10 most frequent paradigms are shown in Table We
bound maximal gap length by 2, therefore the algorithm does not recoginze
¢ as part of the LCS in the examples like uepamocs/uepaewncs/uepatimecs.
In our experiments we randomly separated the sample on 2 equal halfs, using
one for testing and the other one for training. The results were averaged for
5 random splits. In the case of nouns we did not use prefixes as features and
bound suffix length d by 3,5 or 7. The percentage p of selected features was
0.10,0.25 or 0.5. In the case of verbs we calculated the suffix length without
the reflexive affixes -ca and -co. We also used the prefix features with the
maximal length of 2 for verb conjugation. To predict paradigm labels we used
the logistic regression classifier from sklearn package [Pedregosa et al., 2011],
which itself uses the LIBLINEAR library [Fan et al., 2008|. The results are
presented in T able@and Table . We report both per-paradigm (the percent-
age of correctly predicted abstract paradigms) and per-form (the fraction of
correct word forms) accuracy.

0.1 0.25 0.5
3| 77.199347 | 77.26 93.47 | 77.25 93.47
9| 77.38 93.50 | 77.32 93.48 | 77.32 93.48
717744 9345 | 77.35 93.43 | 77.35 93.43

Table 6: Prediction accuracy for noun paradigms classification

Since the result of nouns is practically independent from the classifier pa-
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rameters, we fix p = 0.1 and d = 5 in future experiments. We use the same
setting for the verbs task, however, in this case the impact of feature length

is more significant.

0.1 0.25 0.5
3| 51.41 79.96 | 51.41 79.96 | 51.41 79.94
5 | 76.30 88.83 | 76.09 88.62 | 75.94 88.62
7| 77.06 88.36 | 78.01 89.35 | 77.96 89.38

Table 7: Prediction accuracy for verb paradigms classification

We also study how the prediction quality changes with the size of the training
set. When there is little training data available, a lemma may not fit to all
inflection patterns observed in training phase (say, a verb ends with -mu and
all the infinitives in the training set ended with -ms, -msca or -us). In such
cases we allow the system consult a complete list of paradigms, no matter
whether they were observed in training. The dependence between training
data size and system performance is shown in Table

Training data fraction
Task 77025 T 05 1 06 [ 07 | 08
Nowns | 7176 | T5.05 | 7738 | 77.95 | 77.88 | 77.40
91.15 | 92.32 | 93.50 | 93.70 | 93.77 | 93.84
Verhs | 65500 | TLB0 | 7630 | 77.49 | 77.60 | 77.56
83.83 | 86.27 | 88.83 | 89.36 | 89.41 | 89.50

Table 8: Train data percentage and performance quality

4.1 Analysis of results

It is uninformative to compare results for different languages and even for
different datasets. As we know, the only experiment on paradigm detection
for Russian nouns was conducted by Ahlberg et al. in [Ahlberg et al., 2015],
showing per-table accuracy of 66% and per-form accuracy of 89%. However,
they used data collected from Freeling ([Padro, Stanilovsky, 2012]), which is
of much lower quality than ours. They also used 5-fold cross-validation for
performance evaluation, which means that 80% was left for training instead
of only 50% in our experiment. However, the results for other languages,



such as Catalan, French or Italian, reported in [Ahlberg et al., 2015] are
much higher with per-table accuracy of over 90%. We claim that corpus-free
methods are incapable of reaching comparable accuracy on Russian data due
to objective linguistic factors.

The are two main sources of errors in the case of noun paradigm prediction:
the first is animacy/unanimacy affecting the forms of accusative, the second
is -a/-p1 in the form of Nom.Pl. In both cases the correct category does
not depend on the surface form (consider sosauwonox vs 6owonox or zoaoc
vs Kkoaoc). The system also fails to discriminate between masculine and
feminine nouns ending with » (mosoas vs xopoaw). It is obvious that these
ambiguities cannot be resolved without corpus statistics. We discuss this
question in details in the next section.

For verbs the problem is more subtle. Often the mistake happens for the
forms of imperative mood, for example, *mpesosicu is predicted instead of
mpesooicy or *nozumu for norums. In such cases the forms or indicative
mood are usually correct. Another common source of mistakes are e/¢ in
verb flections (compare zaonnuyme and moaxnyms). In this case the flection
depends on the stress position in the infinitive form, however, we removed the
stress signs in our data since they are marked inconsistently in Wiktionary it-
self. Such mistakes affect only several forms (imperative or third person pre-
sens). Errors of the second type touch practically all forms of the paradigm.
It often happens for the verbs ending on -are (senuwams vs xpuuams). The
system also fails in the case of phonetic alterations (ynusums/ynuorcy), es-
pecially when they happen inside the stem (3s6amv/306y or caamsv/u0).
Summarizing, the spectrum of possible errors for Russian verb paradigm
prediction is wider than for Russian nouns, which explains lower per-form
quality in the verb prediction task. However, in both cases more training
data does not help, as shown in Table[§] We consider the sources of additional
information in the next section.

5 Corpus-based methods of paradigm predictions

In this section we experiment with other features which might be helpful
for automatic paradigm detection. In the verb paradigm task incorrectly
predicted forms sometimes violate the rules of Russian phonology like in
*ocyweemenca or *ucueocw for ucuesnu. These incorrect forms might be
rejected if we extend the model by phonological features. This idea is realized
as following:

First, we train a character ngram model on the training data. Then we

10



augment the algorithm with second classifier on the top of the first. It
takes as features logarithmic probabilities predicted by the classifier on the
first level as well as the scores of the language model. If the basic clas-
sifier has predicted ¢; as paradigm label for the lemma L, we generate all
the forms w; 1, ..., w;m of this lexeme according to the paradigm; then we

m

> —log Py (wi5)
take as language model score the averaged sum s(L,¢;) = =——————
where Py, (w; ;) is the probability of wordform w;; according to character
ngram model. We test two ways of accomodating the language model log-
scores: in the first case we use them as features of the linear classifier. In
the second variant we used language model scores only for filtering, dis-
carding a paradigm ¢; if its score s(L,¢;) is greater than sy + a where sg
is the lowest value among s(L,¢;) and « is some redefined constant. We
used 5-gram language models trained on the set of word forms from the
training data and smoothed the model counts using Witten-Bell smoothing
(|Chen,Goodman, 1996]. The results for Nouns and Verbs tasks are pre-
sented in Table [9] we used p = 0.1 and d = 5 for feature fraction and suffix
length in all trials, the percentage of training data was again 0.5.

Task No character scores | Character scores | Character scores
as features as filters

Nouns | 77.38 93.50 77.42 93.50 77.36  93.42

Verbs | 76.30 88.86 80.37 90.92 77.01 89.35

Table 9: Using character model for paradigm prediction

We observe that language model has no effect for the Nouns task. On
the contrary, on the verbs task filtering already significally improves perfor-
mance, while combining language model scores with initial paradigm proba-
bilities increases prediction quality by 3 percents more. It is easy to explain
since the main source of errors for nouns was the confusion between ani-
mate/inanimate nouns where both the predictions are phonologically plau-
sible. Conversely, in the Verbs task the mispredicted forms in imperative
like *ocywecmenca has low probability according to character ngram mod-
els which allows the system to exclude them.

The main contribution of our paper is corpora-based algorithm for paradigm
prediction. Again, we accomodate corpora counts together with the loga-
rithmic probabilities predicted by the basic classifier on the second stage of
our algorithm. More precisely, after generating the word forms wq, ..., wn,

11



of the lexeme L according to hypothetic paradigm c;, we calculate the cor-
m
pus score by the formula C' = ) —log C'(wj;), where C(wj;) is the number of
=1

times w; occurs in the corpora? All counts are incremented by 1 to avoid zero
probabilities. This method resembles the method of [Ahlberg et al., 2014 |,
however, we make one modification to deal with homonymy: if a word form
occurs two times in the paradigm (for example, in nominative and genitive),
then we divide all the corpora counts of it by 2. Without this modification,
this algorithm favours invariable nouns.

However, we are still unable to discriminate between unanimate and animate
nouns by our algorithm since the set of word forms is the same in both cases.
The only difference is that genitive forms of animate nouns would be more
frequent than the ones of unanimate since they appear in accusative also.
To capture this difference we should measure the similarity between the ex-
pected distribution of case forms and the observed proportion of their counts.
Let P = [p1,...,pm] be the expected probabilies of different word forms ac-
cording to their grammemes and N' = [Ny, ..., N,,] be their observed counts.
We normalize the empirical distribution by its sum N = )" N;, obtaining

J

the empirical probability distribution Q@ = [q1, ..., ¢n] where ¢; = % Then
the difference score equals

DN, P) = qulog% -log N
; j

Note that this measure is simply Kullback-Leibler divergence between Q
and P multiplied by the log count of the given lexeme. The expected form
counts were collected in the training phase separately for each paradigm. The
results for corpora-based paradigm prediction are shown in Table We
used the counts from Russian National Corpora available on ruscorpora.
ru/corpora-freq.html.

Task No corpora | Corpora counts as | Counts and diver-
features gences as features

Nouns | 77.38 93.50 | 80.21 95.34 82.73 95.67

Verbs | 76.30 88.83 | 84.30 93.81 83.66 93.73

Table 10: Using character model for paradigm prediction

We observe that using corpora counts indeed leads to a substantial gain
in performance in both tasks. However, in the case of verbs most of the

12
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advantage is obtained from corpora counts themselves, using similarity scores
slightly worsens performance. On the Nouns task similarity scores, on the
contrary, leads to a further improvement in per-table accuracy. Indeed, the
most difficult problem for nouns is animacy /unanimacy differentiation where
absolute counts are useless. In the verb tasks, conversely, homonimy plays
no role, therefore, similarity scores are redundant and make the data more
noisy.

Inspecting remaining incorrect predictions, we found that in the Verbs task
they are mainly caused by wrong imperative form generation. Often corpus
counts cannot resolve this problem because imperative forms are not very
frequent for many verbs: both xposomouu and *xposomous do not appear in
the RNC counts. Often corpora features are not powerful enough to overcome
the gap caused by first level classifier. For example, for the verb seams the
correct paradigm has probability 0.01 after the first stage. Joint classifier
raises it up to 0.3, however, it is too low to rank this hypothesis on the top.
The same problem arises in the task of noun paradigm prediction: for most
of the erroneous predictions the correct paradigm was excluded already by
the basic classifier or obtained an extremely low probability.

We also combined character ngram scores with the corpora-based classifier,
which improved the performance further. For the Nouns task the gain was
marginal (82.80% instead of 82.73% for per-table accuracy), however, the ac-
curacy of paradigm prediction for verbs achieved 86.51% instead of 84.30%.
The per-form accuracy also increased significantly, reaching 95.66% in com-
parison with 93.81%.

6 Conclusion

We have developed a system for automatic paradigm induction and pre-
diction. Our algorithm of paradigm induction is based on the method of
longest common subsequence. To predict paradigms automatically we apply
a logistic regression classifier using suffix and prefix features. This classifier
achieves accuracy of 77% on Russian nouns and 76% on Russian verbs in
paradigm prediction task, the percentage of correctly predicted forms is 93%
and 88% respectively. We have also designed a corpora-based algorithm of
paradigm prediction using the basic classifier on its first stage. This improves
the accuracy of paradigm prediction to 81% on nouns and 84% on verbs, per-
form accuracy reaches 95 and 93%. These results are substantially better
then previously achieved for Russian in |[Ahlberg et al., 2015] (the authors
of that work used another dataset and experiment setting).
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We plan to improve our results further by using corpora information more
extensively. Our results show that taking into account relative frequencies of
grammemes enhances the quality of corpora-based methods. Therefore mod-
elling the distribution of grammemes more accurately should leave to further
improvement. For this goal we plan to use morphologically disambiguated
corpora. Another improvement could be achieved by grouping together the
corpus statistics for the words of presumably the same paradigm.

Our results could be used for automatic morphological analysis and synthe-
sis in such tasks as POS-tagging or lemmatization. Modern techniques of
lemmatization such as used in [Jonjejan, Dalianis, 2009] also use the LCS
approach but apply it to each word form separately without using full inflec-
tional table. Our method incorporates information from the whole paradigm,
therefore it could potentially improve state-of-the-art algorithms of morpho-
logical analysis for Russian. Since our system does not predict the best
inflection table only, but returns the probabilities of possible paradigms, it
can be used as a component of a joint classifier, taking into account context
model probabilities as well as single word scores. Using context informa-
tion together with suffix/prefix features could also help to determine word
part-of-speech, which is a preliminary step for our algorithm.

This task is especially important for Web texts, which contain numerous out-
of-vocabulary words whose inflection cannot be determined by dictionary-
based methods. We plan to test our approach for morphological processing
of social media texts in future studies.
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7 Appendix

No Abstract paradigm

Count | Example

1 1# 14 m# 1 +a#1+os#1+y#1+am 959 O0=abopr,
#1#1+b1#1+omFF 1 +avu# 1 +e# 1+ax 1=abopt

9 14+-e#1+a#l+a##1+ii#1+0F 1+am 622 O0=Esanrenmne,
H#1+teH 1 +a# 1+evm# 1 +avu# 1+uF1+ax 1=EBanrenn

3 1+a#1+p#l+p#l1#14+e#1+am 444 (O=aBTomaruHa,
#1+y#1+p#l+oit# 1 +amu# 1 +et 1 +ax l=aBromarmux

4 14+6# 14 uH#1+u et 1 +uf 1 +am 330 (0=aKTHUBHOCTB,
#1+v# 1+ ul+pro# 1 +avu#14u#H 14-ax l=akTmBHOCT

5 1+a#l+u#Hl+u#l+iaH#l+u#l+am 270 (0=aBapu4,
#1404 1+uftl+eiiH 1 +amu#l +u#l+ax l=aBapu

6 1#1+m#1+a# 1408# 1 +y#1+am 249 0=abonenr,
#1+a#l+o#H1+om#Al+amuFl+e#l+ax 1=aboneHnTt

7 1+24+a# 142+ u#1+24+u#1+o+2 239 O0=apka,
#142+e#H14+2+am#1+2+y#1+2+u l=ap,2=x
#1+24-oii# 14+ 24+avmu# 1+2+e#1+24ax

8 1#14+u#1+a#1+os# 1 +yF# 1+am 299 O0=amnaJior,
#1#1+uF#1+om# 1+avmu#1+e# 14ax 1—ananor

9 1#1+u#1+a#1+os# 1 +yF# 1+am 174 ()=akajgeMuK,
#1+a#l+os#H1+omAl+amuF# 1 +e#1+ax 1=akamemmk

10 14+o#14+af14+a#1#1+y#1+am 143 O=arenTcTBO,
#1+o#1+aH#l+om#l+amu#l+eH#l+ax l=arentcTB

Table 11: Most frequent abstract paradigms for Russian nouns

16




No | Abstract paradigm Count | Example

1 1+1p#l+0# 1 +emb#1+er#1+em#1+ere# 1+10T 1316 (0=apecToBLIBATD,
#1401 +nat 1 +no0# 1 +mudt 1 +-ii#E 1 +-iire 1=apecroBbiBa

9 14-1hca#1+1och# 1 +embesa 1 +ercs, 568 (0=6apaxTarbcH,
#l+emcattl4+erecw# 1+-1orcatt 1 4-mcs, 1=6apaxra
#1-+mnacp7l-+nochdt 1+mmce# 1 +itca# 1-+itTech

3 1+oBarb#1+yio#1+yemb#1+yer 302 0=aruTupoBarh,
#1-+yem#1+yere#1+yor#1+oBas l=arutup
#1+osana#1+osanoF1+-osamu# 1 +yii# 1 +yiire

4 14+urp#1+10# 1 +umb#1+ur#1+um# 1+ure 192 (0=6/1aromapuTh,
H1+ar#1+un# 1 +una# 1+wuno# 1 +unmm# 1 +uf 14+ure 1=6arogap

5 14+ure#1+y# 1 +urms# 1 +ur# 1 +um## 1 +ure 117 0=BepmuTD,
#l+ar# 1+un#l+wnadt 1 +uno# 1+ unn#1+u#1+ure 1—8epm

116

6 14+urn# 1+mo# 1 +umb# 1 +ur# 1 +uv# 1 +ure 0=6/1ar0CI0BUTH,
#14ardt 1+wn# l+unadt 1 +wno# 1 +uma# 14+u#t 1 4-ute 1=6sarocsion

7 1+ursca#l+roch# 1 +umbea#f 1+urcs 104 0=BasurbCs,
#1+umcaffl+urech# 1-+arca# 1 +uacsa 1=Bana
#l+unacv# 1+unocs# 1+unucs# 1 +ucs# 1+urech

8 14+ murb# 1 +xy#1-+nuns# 1+ aur 39 0=6ponuthb,
H1+mum# 1+ mure 1+ nar# 1+ mun 1=6po
#14+-nunadt 1+ mno# 1+ muna# 1+ mu# 14-nnre

9 1+oBarbca# 1 +yocp# 1+yembea# 1+-yercast 1+yemes | 79 0=azanTupoBarbCs,
#1+yerecb#1+yrorcsa# 1+oBasicsa# 14-oBatach l=amanTup
#1+oBanoce# 1+oBanuce# 1 +yiica# 1 +yiiTecs

10 | 1+yre#Hl+y#1+emb#1+er#1+Em#1+Ere#1+yT 66 0=6JrecHyThb,

H#1+yn#l+yna#l+ynoF#1+ynul+u#1+ure

1=06uecn

Table 12: Most frequent abstract paradigms for Russian verbs
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