
Sylvain Kahane *
(Paris)

WHY TO CHOOSE DEPENDENCY
RATHER THAN CONSTITUENCY FOR SYNTAX:

A FORMAL POINT OF VIEW

A b s t r a c t: In this paper we want to come back again to the question of the equivalence or
non-equivalence between dependency and constituency. Many arguments have been pro-
posed. In this presentation, we will focus on formal arguments concerning the respective
descriptive capacities of these two ways of representation. We show that, if headed con-
stituent trees are equivalent to stratified dependency trees, weakened or enriched versions
of one of these formalisms cannot be simulated by the other one 1.

Keywords: dependency grammar, phrase structure grammar, stratified dependency tree,
headed constituent tree

1. Introduction

The debate concerning the choice between constituency and dependency in
syntax is not new. Even if the tendency is reversing, the last decades of linguistic
modeling have been dominated by constituency-based models and the discussion of
the advantages and disadvantages of the two ways of representation have been es-

1 This paper is dedicated to the 80th birthday of Igor Mel’čuk with whom I have had so
many discussions about the arguments to prove why the syntactic representation is a de-
pendency tree. (Contrarily to Igor, I do not think that the syntactic structure is as simple as
a tree even if I am convinced that it is dependency-based. And I do not think that the fact
that the core of the syntactic representation is dependency-based excludes a constituency-
based level of representation: see for instance, Gerdes & Kahane (2007), the paper we
wrote for his 70th birthday.) The most decisive argument of Igor is that there are depend-
ency trees in his brain when he speaks and that he can see them. I never doubt that it is true,
but I never considered that as a proof. One of the main reasons is that Igor’s brain is really
not representative of an ordinary speaker’s brain. It is the brain of one of the most brilliant
linguist of all the times and moreover the brain of a polyglot who has developed special
skills to learn languages. His brain has become the first complete implementation of the
Meaning-Text theory! Igor, I am sure we will continue to improve your implementation for
many years.

Modyco — Université Paris Ouest Nanterr & CNRS
sylvain@kahane.fr

Sylvain Kahane 258

sentially sustained by syntacticians working with dependencies. Several kinds of
arguments have been developed.

A first range of arguments does not concern the syntactic representations
themselves, but the way they are dealt with by the brain. For instance, Tesnière
does not justify the introduction of dependency by linguistic arguments but by a
«mentalist» argumentation: «Every word that is part of a sentence ceases to be iso-
lated as it is in the dictionary. The mind perceives connections between a word
and its neighbors. The totality of these connections forms the scaffold of the sen-
tence» (Tesnière 1959: Ch. 1, 3rd paragraph; I underline) (see also Note 1). There is
of course no way to prove that today, but such arguments must not be rejected too
quickly. We now have more information on the functioning of the brain and we can
suppose that our memory consists of a network of knowledge and that our main
mental activity is to connect things together. Such arguments have been used to de-
fend dependency (Hudson 1993; 2007).

A second range of arguments concern the correspondences between the syn-
tactic representation and other levels of representation. These arguments must be
separated from the previous ones even if they are related: they do not concern the
process but instead the correspondence rules considered from a purely declarative
point of view. These arguments concern the advantages of a dependency-based
structure for the interface with text (the linear rules) and for the interface with the
meaning (the syntax-semantics interface). Concerning linearization, it is well
known that dependency syntax can deal with non-projective structures (see for in-
stance Mel’čuk, Pertsov 1987; Gerdes, Kahane 2007), while constituency-based
models need the addition of complex mechanisms like transformations, movements
and so on (see (Gerdes 2006) for an argumentation). For the syntax-semantics in-
terface, the Meaning-Text theory is probably one of the first theories to integrate it
in a formal linguistic model. It has been shown that a dependency tree is closer to a
semantic representation and that dependency-based approaches are more adapted to
processing of valency constraints and of multi-word expressions and particularly
lexical functions (Mel’čuk 1988; Iordanskaja, Polguère 1988; Polguère 1990;
Milićević 2007). These arguments are probably the most important and convincing
in the comparison between constituency and dependency, but this is not the point
we want to develop here.

A third range of arguments concern the expression power of the different for-
malisms: are there syntactic configurations that can be described in terms of de-
pendency-based structures and not in terms of constituency-based structures and
vice versa? This is the point we want to develop here, considering the problem
more from a mathematical point of view rather than form a linguistic one. In this
paper, we will first (Section 2), starting from a question of syntax arising in algebra
and not in natural languages, explore the extent the two representational formats

Why to choose dependency rather than constituency for syntax 259

are equivalent. Subsequently (Section 3), we study the limits of this equivalence
according by weakening or enriching the one or the other format 2.

2. Representation of the structure of a calculation

We start our presentation with the study of the structure of an elementary alge-
braic calculation. We want to show that the problem of the choice of a syntactic
representation is not a question of linguistics and to appreciate, outside the internal
debates of this discipline, the qualities of the different possible representations of
the structure of a calculation.

Let us consider the formula (7 × 19) + (5 × 31). To perform this calculation,
we must perform the two multiplications before summing their results. It can be
represented by the following diagram:

 (7 × 19) + (5 × 31)

 133 155

288
Fig. 1. Diagram associated to a calculation

Each intermediate calculation involves two numbers and one operator. The

structure of the whole calculation can be represented in the following way:

 (7 × 19) + (5 × 31)

 num op num num op num

num

 num op num

Fig. 2. Constituent structure of a calculation

2 I would like to address again some words to Igor Mel’čuk. Even if this paper con-

tains principally results in mathematics, this paper has been written for linguists and par-
ticularly for linguists like Igor Mel’čuk, who knows the importance for linguists to work
with mathematicians and to have themselves a mathematical culture. I take advantage of
this anniversary to thank Igor for the great interest he has in our collaboration. I am eter-
nally grateful to him for all I learn from him and from the enormous help he has given me
to enter the world of linguistics.

Sylvain Kahane 260

Such a structure is called a constituent tree (CT)3. The elements of the formula
(we omit the parentheses) are the leaves of the tree and the internal vertices repre-
sent the constituents of the formula. Each internal vertex receives a label indicating
the nature of the constituent — number or operator. Some numbers are the explicit
numbers in the formula, the others are the result of a calculation. The CT of Fig. 2
shows how the whole calculation is done. It is similar of the diagram of Fig. 1:
the CT can be converted into this diagram by replacing the labels number by their
numeric value and the vertices operator by horizontal lines modeling the calcula-
tion.

A calculation where a unary operator intervenes like the square root in 1 + √5
can be represented in the same way:

 num op num

1 + √ 5

 op num

num

Fig. 3. Constituent tree of another calculation

3 The immediate constituent analysis has been theorized by Leonard Bloomfield
(1933). But contrary to Chomsky, Bloomfield did not draw any CTs. Above all, he gave
more importance to the notion of head and to the asymmetry of the relation between the
head and the other constituents than to the notion of constituent itself. His definition of the
notion of constituent is first given in the chapter on morphology where he defines the mor-
pheme. In the chapter on syntax, it is said that «Syntactic constructions are constructions in
which none of the immediate constituents is a bound form. […] The actor-action construc-
tion appears in phrases like: John ran, John fell, Bill ran, Bill fell, Our horses ran away.
[…] The one constituent (John, Bill, our horses) is a form of a large class, which we call
nominative expressions; a form like ran or very good could not be used in this way. The
other constituent (ran, fell, ran away) is a form of another large class, which we call finite
verb expressions; a form like John or very good could not be used in this way». We think
that in some sense Bloomfield should rather be seen as a precursor of the notion of connec-
tion (called here construction) and dependency than as the father of constituency. I think it
is really Chomsky who considered that the immediate constituent relation was more impor-
tant than the head-daughter relation and who based the syntactic representation on a CT.
And Chomsky popularized the constituency-based syntactic representation with his formal-
ization of grammar rules by context-free grammars.

Why to choose dependency rather than constituency for syntax 261

Considering our two examples, we see that the constituents number can be de-
composed in two or three sub-constituents. The element that decides the internal
structure of a constituent is the operator, which can be unary, like √, or binary, like
+ and ×.

The element that controls the internal structure of a constituent is called its
head. An element X governs the sub-constituents of the constituent whose head is
X and conversely a constituent Y depends on an element X if Y is a sub-constituent
of the constituent whose head is X.

Another tree-like representation, called a dependency tree (DT), can thus be
adopted by replacing each constituent by its head and by placing each element un-
der its governor:

7 19 5 31

+

× ×

5

1 √

+

Fig. 4. Dependency structures of two calculations

The CT can be easily reconstructed from the DT. They are still present in the

DT: the constituents are the projections of the sub-trees of the DT. A sub-tree is a
tree formed by all the vertices that are under a given vertex, this vertex included;
the projection of a sub-tree is the segment of the formula composed by all the ele-
ments labeling this sub-tree. The following figure shows how the CT can be recov-
ered from the DT, simply by considering vertices and projections as constituents
(cf. (Lecerf 1961) or (Kahane 1997) for a formalization).

(7 × 19) + (5 × 31)

 num op num num op num

num

 num op num

7 19 5 31

+

× ×
num

num num num num

num

op

op

op

num

Fig. 5. Changing from a dependency tree to a constituent tree

Sylvain Kahane 262

On the other hand it is necessary to add the information concerning the head of
each constituent in order to change from a CT to a DT. Thus a DT, though it is
simpler (it has half the number of vertices), contains more information than a CT!

So far we were only interested by the hierarchical structure and, even if it was
not specified, the trees we have considered were not ordered 4. A CT is ordered if
the daughters of each vertex are linearly ordered, which induces a linear order on
the leaves of the tree. To imagine an unordered tree, one must think of the tree as a
mobile that is suspended by its root, daughters of a vertex freely moving in the air.
CTs are generally considered as more interesting for the study of linear precedence
constraints because they are naturally ordered by the planar representation imposed
by the sheet on which they are drawn. But, as we want to show now, it can be more
advantageous to deal with linear precedence constraints starting with a DT rather
than a CT, particularly when the linear order does not come immediately from the
hierarchical structure.

Before moving to natural language utterances, let us recall that dependency
structures for formulae have been introduced following the work of the Polish logi-
cian Jan Łukasiewicz, who showed that there are several ways of encoding a for-
mula linearly (Łukasiewicz 1930). A first way is the one we use when we write the
formula (7 × 19) + (5 × 31), where each binary operator is placed between its two
dependents. This writing needs parentheses in order not to be ambiguous. Another
writing, called Polish or prefixed writing, consists of reading the tree by always
collecting the governor before its dependents and by collecting all the dependents
from left to right: + × 7 19 × 5 31. This formula is not ambiguous, despite the ab-
sence of parentheses, as soon as the arity of each operator is known. The arity of an
operator is the number of its arguments and then of its dependents in the DT. The
postfixed or inverted Polish reading, where the governor is collected after its de-
pendents, is particularly appropriate for calculus and is used by automatic calcula-
tors, including some consumer calculating machine. Indeed all you have to carry out
the calculation 7 19 × 5 31 + × is to pile the number as they come and to apply each
operator to the one or two numbers preceding it (depending on its arity) as soon as
it appears and to replace it and the consumed numbers by the obtained number:

4 Traditionally DTs are by default unordered, like Tesnière’s representations, while
CTs are ordered, as in Chomsky’s work. But since the beginning of the 1980s, linguists,
such as (Gazdar et al. 1985), have strived — and this is true even of constituency-based
formal grammars — to distinguish between the syntactic hierarchy (or immediate domi-
nance) from the linear order (the same was done a couple of decades before by Tesnière
(1959) in dependency grammar). Present phrase structure grammars, like HPSG (Pollard,
Sag 1994), handle the immediate constituency constraints and the linear precedence con-
straints separately.

Why to choose dependency rather than constituency for syntax 263

7
19
× 133 133
 5
 31
 × 155
 + 288

Fig. 6. Calculation from a postfixed writing 5

These various strategies to go from a hierarchical structure to a linear order

can be seen again in natural languages and we can consider that grammar of lan-
guages come from the need to encode information non linear by essence linearly
because the speech signal we produce when speaking is linear 6.

3. Equivalence and non-equivalence

Section 2 showed on an example the equivalence between DT and headed CT.
This section is more technical and clarifies the exact nature of this equivalence. We
will first state that the simulation of any CT needs an enrichment of the DT for-

5 This figure tries to represent the evolution of the calculation during the process. Each
time a calculation is carried out and elements are suppressed from the pile we create a new
colon to show the new content of the pile.

6 I want to stress that the syntactic structure of a calculation is fundamentally unor-
dered (although for non-commutative operators like subtraction or division, the order of
numbers is relevant). The linear order is only needed because we want to describe the cal-
culation by a linear writing. The same is partly true for natural languages. Each language
imposes particular order constraints: some languages, like Korean or Turkish, are head-
final, that is the head of each constituent is at its end (Tesnière (1959: 22—33) says they are
centripetal because when reading the sentence we go toward the center of the sentence
which is the root of the DT), while others, like Welsh, are head-initial (or centrifugal in
Tesnière’s terms). And others, like English or French are head-medial, the head of a con-
stituent being in the middle of its dependents. But in these different languages, there is a
similar hierarchical structure for sentences and the different orders in different natural lan-
guages correspond to different conventions of «reading» of this hierarchical structure: a
prefixed reading for head-initial languages and a postfixed reading for head-final lan-
guages. This is why, following Tesnière and Mel’čuk, I really think we need to separate the
syntactic structure (called the structural order by Tesnière) from the linear order and to
consider unordered DTs. Moreover, there are non-configurational languages (sometimes
abusively called free-order languages), like Russian or Walpiri, where the linear order has a
certain independence from the syntactic structure and is used to express information related
to the communicative structure.

Sylvain Kahane 264

malism, which gives us stratified DTs (Section 3.1). If headed CTs and stratified DTs
are equivalent, it is not true that weakenings (Section 3.2 and 3.3) or enrichments
(Section 3.4) of these formalisms necessarily have an equivalent counterpart.

3.1. Headed CT vs. stratified DT

As seen before, any headed CT induces a DT. When transforming a headed CT
into a DT, all constituents having the same lexical head are aggregated. In a headed
CT, every constituent having x as lexical head is called a projection of x. The big-
gest one is called the maximal projection of x and the others are called the interme-
diate projections of x. Only maximal projections can be recovered from the DT. As
a consequence, the same DT can be induced by different headed CTs.

But it is possible to enrich the DT formalism to recover the intermediate pro-
jections and to totally simulate a headed CT. The canonical solution consists of in-
troducing different levels for the dependencies of a same node. It can be done by
stratifying nodes and attaching the dependents to different strata (the third structure
in Fig. 7) or by adding types to the dependents of each node (the fourth structure in
Fig. 7, where the two dependents are typed as int(ernal) and ext(ernal)). We call
such a structure a stratified DT.

loves

John Mary

loves

John Mary
John V NP

 S

NP VP

 loves Mary

ext int
loves

John Mary

Fig. 7. A headed CT with the corresponding DT and stratified DT

(with two conventions for the stratified DT)

The first structure in Fig. 7 is a headed CT: the head of a constituent is the sub-

constituent marked by a double line. For instance, the head of S is VP. The lexical
head is obtained by looking recursively for the head until we find a lexical item,
that is a leaf of the CT. The lexical head of S is the lexical item Mary.

The second structure in Fig. 7 is the corresponding DT, describing the depend-
ency relations between the lexical items. It can be obtained by aggregating each
constituent with its lexical head; for instance, S, VP and V nodes are aggregating
with their lexical head loves.

Why to choose dependency rather than constituency for syntax 265

The third structure in Fig. 7 is a first representation of the corresponding DT:
here, the different strata are explicitly represented by embedded bubbles (see Kahane
(1997) for a formalization of bubble trees). Each of these strata corresponds to a differ-
ent projection of the same lexical item and each dependent is attached to the stratum
corresponding to the projection it belongs to: the subject John is attached to the stra-
tum corresponding to S and the object Mary is attached to the stratum belonging to VP.

The fourth structure of Fig. 7 is an alternative representation of the same strati-
fied DT. It can be interpreted only if we know the obliqueness order on the types of
dependents, which allows us to construct different projections for the same node.
For instance, if int < ext, loves will have two projections: a projection with the de-
pendents of obliqueness ≤ int containing only Mary (that is VP) and a projection
containing the dependent of obliqueness ≤ ext containing both John and Mary (that
is S). We use the labels internal and external (used by today works in Generative
Grammar), but we can replace them by bar1 and bar2 (with bar1 < bar2) to directly
obtain X-bar categories for our constituents (and follow the conventions proposed
by Jackendoff (1977) for headed CTs). It is clear that we can reconstruct the origi-
nal headed CT, including the labels on nodes.

3.2. When DTs cannot simulate plain CTs

It is generally admitted that «he who can do more can do less». But this piece
of wisdom is not true for formal structures: if DTs can simulate headed CTs, they
cannot simulate plain CTs, that is CTs without heads 7. In other words, a DT can
simulate a headed CT but it cannot simulate a weaker structure like a CT 8.

Let us explain that with an example. Consider the following CT for the sen-
tence The dogs are barking:

the dogs are barking

A

B C

Fig. 8. A non-headed CT

7 We use the notion of simulation with a technical sense. A set of structures A simu-

lates a set of structures B if there is a canonical transformation from A to B where each
structure in B is the transformation of at least one structure in A.

8 Weaker must be understood in a purely mathematical sense. A mathematical struc-
ture S is weaker than a mathematical structure S’ if S contains less information than S’ and
S can be structurally enriched to obtain S’. For instance, a non-directed graph is weaker
than a directed graph: you can enrich a non-directed graph by directing each connection
(= edge, in mathematical terminology) and obtain a directed graph.

Sylvain Kahane 266

Without any information about the heads of constituents B and C, it is not pos-
sible to decide which of the lexical items the and dogs must be connected to which
of the lexical items are and barking and every combination is possible (according
to different choices of heads). In other words, it is not possible to draw a DT for
this sentence without adding information concerning the head of each constituent
and hence no DT can simulate this plain CT.

3.3. When (headed) CTs cannot simulate dependency-based structures

If headed CTs can simulate DTs, they cannot simulate connection graphs, that
is a «dependency structure» where «dependencies» are not directed but are only
symmetric connections between two nodes (see (Gerdes, Kahane 2011) for a for-
malization of connection structures). In other words, a headed CT can simulate a
DT but it cannot simulate a weaker structure like a connection graph, and there is
no way to weaken a (headed) CT for that.

Consider a connection graph for Peter and Mary:

 Peter and Mary
Fig. 9. A connection graph

This non-directed graph can be seen as a subspecified DT, like the following

ones:

 Peter and Mary Peter and Mary
Fig. 10. Two DTs corresponding to the same connection graph

But this connection graph cannot be simulated by a constituency-based struc-

ture without specifying some hierarchy on the connections. Indeed, as just illus-
trated, a CT cannot define connections or dependencies without head marking. And
a headed CT defines dependencies and not only connections. It is thus impossible
to just simulate a connection graph with a constituency-based structure.

This non-equivalence between connection graphs and CTs is very representa-
tive, I think, of the difference in philosophy between dependency- and constitu-
ency-based approaches. A connection graph defines a set of syntactic units: in our
example, and is connected with both Mary and Peter, without privileging either of
the two connections 9. But a CT must privilege one of the two connections and de-

9 This difference in philosophy is well illustrated by the introduction to constituency
given by Gleason (1965: 129—130): «We may, as a first hypothesis, consider that each of

Why to choose dependency rather than constituency for syntax 267

cide to regroup and and Mary or to regroup Peter and and. If not, the phrase Peter
and Mary will remain unanalyzed, without internal syntactic structure 10.

A last remark concerns connections and constituency. Tesnière was one of the
first to propose a formal representation of coordination. He considered that in co-
ordination, two elements (or more) occupy the same syntactic position. The combi-
nation between these two elements, called junction by Tesnière, is thus an opera-
tion of combination orthogonal to the dependency (which is restricted to the com-
bination between a governor and a dependent). He advocated a symmetrical
analysis of coordination and proposed to represent junction by horizontal links, or-
thogonal to the vertical dependency links. Consider the following French sentence
and its syntactic structure (Fig. 11):

(1) Alfred a acheté un livre et un cahier neufs

Alfred has bought a book and a notebook new(plural)
 ‘Alfred bought a new book and a new notebook’.

One has argued several times that, by introducing junction, Tesnière was pro-

posing a syntactic representation mixing constituency and dependency (Hudson
1980; Sangati 2012). And even that coordination needs a constituency-based repre-
sentation. But junctions are just non-directed connections and such connections

the words [of a utterance] has some statable relationships to each other word. If we can de-
scribe these interrelationships completely, we will have described the syntax of the utter-
ance in its entirety. […] We might start by marking those pairs of words which are felt to
have the closest relationship». So far what Gleason writes is compatible with a dependency-
based approach. But he adds the following assumption without any justification: «We will
also lay down the rule that each word can be marked as a member of only one such pair»,
and declares the method of finding the best among all the possible pairings to be «the basic
problem of syntax». On the contrary, we can exploit the fact that natural syntactic units are
not pairwise disjoint. This defines several possible fragmentations of a utterance into con-
stituents. Formally each of these fragmentations is a CT, even if only one of these CTs is
recognized as the CT of the sentence by grammarians working in constituency-based ap-
proaches. Gerdes & Kahane (2011) show that this multiplicity of fragmentations naturally
defines a DT and that consequently DTs are richer structures in the sense that they contain
informatively a multiplicity of fragmentations and not only one (even if the hierarchy in a
DT allows to privilege one, which is the CT of maximal projections). See also Osborne
(2005), Groß & Osborne (2012) for a similar exploitation of DTs; they show that a DT de-
fines many more syntactic units (which they call catenae) than a CT and that most of these
syntactic units can be as relevant for linguistic modeling as the syntactic constituents privi-
leged by constituency-based approaches.

10 I am not discussing here whether or not a symmetrical analysis is more relevant than
an asymmetrical one (see Kahane 2012 for a discussion). I just take this example to illus-
trate the non-equivalence of two formalisms. There are well-known arguments (see for in-
stance Mel’čuk 1988) showing that and Mary is more «cohesive» than Peter and.

Sylvain Kahane 268

 livre et cahier

a

Alfred acheté

 un neufs un
Fig. 11. A syntactic structure with dependencies and junctions (from Tesnière 1959: 340)

cannot be simulated by a constituency-based formalism. There is no more constitu-
ency in junction than in dependency 11.

3.4. Equivalence and non-equivalence of enriched structures

A particularity of DTs is that they presuppose that each constituent has exactly
one lexical head. But in constituent structures, it is possible to consider constituents
with co-heads. It has been for instance proposed for the symmetrical analysis of
coordination where conjucts are considered as co-heads (Jackendoff 1977). It is
possible to enrich the dependency formalism to deal with co-heads.

Let us for instance, consider the sentence The little boy ran. We can consider
that the choice between D and N for the head of a DP/NP is not relevant 12 and that
D and N are co-co-heads (indicated by double lines) (Fig. 12):

This co-headed CT can be simulated by an extension of stratified TDs, where
co-heads are placed in a bubble. We call such a structure a bubble DT (see (Kahane
1997) for a formal definition and a formalization of the correspondence between
co-headed CTs and bubble DTs). The whole bubble the boy depends on the gover-
nor ran, while little depends only on boy.

11 Tesnière’s conventions do not allow to formalize nested coordinations like in I
would like to find someone who speaks French or Italian and German, where two interpre-
tations are possible: [French or Italian] and German vs. French or [Italian and German]. But
this can be formalized by bubble trees (see Kahane 1997; 2012 and the next section), which
are not constituents either.

12 Again, it is not our purpose to discuss here if there exist or not constituents with co-
heads and to decide what is a head of NP/DP. It is well known that there are arguments
both in favor of D and N (see (Abney 1987) for the beginning of the debate about «DP-
hypothesis»). My conclusion is that none of the two lexical items controls alone the distri-
bution of the phrase and that not considering one of the two items as the only head is a pos-
sible solution. As it can be seen here, this solution is compatible with a dependency-based
formalism and is not so complicated (for people accepting that there can be something else
than trees in syntax).

Why to choose dependency rather than constituency for syntax 269

D N’/NP V

S

NP/DP VP

the Adj N ran

 little boy

little

ran

the boy

Fig. 12. A co-headed CT and the corresponding bubble DT

One might state that bubble DTs combine both dependency and constituency,

but that would be a false interpretation of these structures. First, the content of the
bubble the boy is not a constituent of the sentence because these two lexical items
are not adjacent. Second, the grouping of the and boy and the link between this
group and their governor ran might be interpreted as a 3-node connection. What a
bubble DT encodes is the fact that it is possible that lexical items could not be only
pairwise connected. Neither the ran nor boy ran is an acceptable fragment of the
sentence, so none of these pairings is acceptable: the verb ran needs both D and N
to validate the connection.

The last example we want to discuss concerns circular connections. There are
cases where three lexical items can all be pairwise connected: A and B, B and C
but also A and C. For instance, Hudson (2007) defends, for an equi-construction
like Peter wants to come, that Peter depends both on wants and come 13. This is

13 Mel’čuk (1988; 2003) considers that the dependency between Peter and to come is a
semantic dependency and must not appear in the syntactic structure. Nevertheless, the con-
dition on this semantic relation is syntactic: the subject of want is shared with the potential
subject of its verbal complement. For instance, for obtaining a semantic relation with the
second argument of the verbal complement, we need to passivize it: Peter wants to be rec-
ognized (see Kahane (2011) for a formalization introducing such syntactic dependencies in
the syntax-semantics interface rules). There are other cases where such configurations have
been proposed. Gerdes & Kahane (2011) consider examples like the rise of nationalism in
Catalonia, where the phrase in Catalonia can be connected to both rise and nationalism
without significant change of meaning. The most puzzling case is certainly wh-words. As
shown by Tesnière (1959), wh-words are both pronouns and complementizers and must for
this reason occupy two positions in the syntactic structure (see (Kahane 2002) for an in-
depth argumentation for Tesnière’s analysis). Generative grammars propose a very similar
constituency-based analysis with the coindexation of a complemetizer and an argumental
position.

Sylvain Kahane 270

very easy to formalize with a dependency graph (Fig. 13). It need merely accept
nodes with two governors. The same analysis can be done in constituency-based
systems, but in contrast to dependency-based approaches, constituency needs to
employ empty nodes and coindexation (Peteri wants [εi to come]), which is much
more costly.

 wants

Peter

to

come

Fig. 13. Dependency graph

4. Conclusion

We have explored the equivalence between dependency-based and constitu-
ency-based approaches to syntax, showing that headed CTs and stratified DTs can
simulate each other. It implies that, in many cases, the two kinds of structures are
possible representations and the choice is rather a matter of fashion. Due to the in-
fluential work of Chomsky (1957), constituency-based representations have domi-
nated linguistics during the second half of the 20th century. But now that the mod-
els are more sophisticated, taking into account the semantics and the diversity of
the lexicon (including complex discontinuous constructions), the trend seems to be
reversed. In this paper, we have focused on some details of the formal equivalence
showing that dependency-based formalisms can have some advantages by not
privileging certain syntactic units (the X-bar constituents) at the expense of others.
Moreover, the dependency formalism can be easily enriched to take into account
co-heads or multi-node dependencies. If one believes, like I do, that syntactic struc-
tures are more complicated than the structures that current models handle, depend-
ency-based approaches could actually be more promising than constituency-based
ones, allowing consideration of more syntactic units (without privileging constitu-
ents too much), relaxation of the hierarchy (with non-directed connection) and
more complex relations (with 3-node connections or multi-governed position).

Why to choose dependency rather than constituency for syntax 271

Acknowledgements

I would like to thank Tim Osborne, Paola Pietrandrea and Alain Polguère for
useful comments and corrections on the first version of this paper. Exceptionally,
one of my papers has not been revised by Igor Mel’čuk. That’s the price of the sur-
prise.

B i b l i o g r a p h y

Abney 1987 — Abney S. The English Noun Phrase and its Sentential Aspect. PhD Thesis.
Cambridge (MA): MIT, 1987.

Bloomfield 1933 — Bloomfield L. Language. New York, 1933.
Chomsky 1957 — Chomsky N. Syntactic Structure. Cambridge: MIT Press, 1957.
Gazdar et al. 1985 — Gazdar G., Klein E., Pullum G., Sag I. Generalized Phrase Structure

Grammar. Harvard University Press, 1985.
Gerdes 2006 — Gerdes K. Sur la non-équivalence des représentations syntaxiques:

comment la représentation en X-barre nous amène au concept du mouvement // Les
Cahiers de Grammaire. 2006. 30. P. 175—192.

Gerdes, Kahane 2007 — Gerdes K., Kahane S. Phrasing It Differently // Wanner L. (ed.).
Selected lexical and grammatical issues in the Meaning-Text Theory. Amsterdam;
Philadelphia: Benjamins, 2007. P. 297—335.

Gerdes, Kahane 2011 — Gerdes K., Kahane S. Defining dependency (and constituency) //
Proceedings of the 1st international conference on Dependency Linguistics (Depling).
Barcelona, 2011. P. 17—27.

Gleason 1965 — Gleason H. A. An Introduction to Descriptive Linguistics. New York:
Holt, Rinehart & Winston, 1965. [Revised edition 1961].

Hudson 1980 — Hudson R. Constituency and Dependency // Linguistics. 1980. 18 (3/4).
P. 179—198; A Second Attack on Constituency: A Reply to Dahl // Linguistics.
18 (5/6). P. 489—504.

Hudson 1993 — Hudson R. Do We Have Heads in Our Minds? // Corbett G., Fraser N.,
McGlashan S. (eds.). Heads in Grammatical Theory. Cambridge Univ. Press, 1993.
P. 266—291.

Hudson 2007 — Hudson R. Language Networks: The New Word Grammar. Oxford Uni-
versity Press, 2007.

Iordanskaja, Polguère 1988 — Iordanskaja L., Polguère A. Semantic processing for text
generation. Technical report, ORA, Canada, 1988.

Jackendoff 1977 — Jackendoff R. X-bar Syntax. A Study of Phrase Structure. Cambridge:
MIT Press, 1977.

Kahane 1997 — Kahane S. Bubble trees and syntactic representations // Proc. 5th Meeting
of the Mathematics of Language (MOL5). DFKI. Saarbrücken, 1997. P. 70—76.

Kahane 2002 — Kahane S. A propos de la position syntaxique des mots qu- // Le Goffic P.
(éd.). Interrogation, indéfinition, subordination. Verbum. 2002. XXIV. 4. P. 399—435.

Sylvain Kahane 272

Kahane 2012 — Kahane S. De l’analyse en grille à la modélisation des entassements //
Caddeo S., Roubaud M.-N., Rouquier M., Sabio F. Hommage à Claire Blanche-
Benveniste. Presses de l’Université de Provence, 2012.

Lecerf 1961 — Lecerf Y. Une représentation algébrique de la structure des phrases dans
diverses langues naturelles // Comptes Rendus de l’Académie des Sciences de Paris.
1961. 252. P. 232—234.

Łukasiewicz 1930 — Łukasiewicz J. Philosophische Bemerkungen zu mehrwertigen
Systemen des Aussagenkalküls // Comptes rendus des séances de la Société des
Sciences et des Lettres de Varsovie. 1930. 23. S. 51—77. English transl.: Weber H. Phi-
losophical Remarks on Many-Valued Systems of Propositional Logics // S. McCall (ed).
Polish Logic 1920—1939. Oxford: Clarendon Press, 1967.

Mel’čuk 1988 — Mel’čuk I. Dependency Syntax: Theory and Practice. Albany (N. Y.): The
SUNY Press, 1988.

Mel’čuk 2003 — Mel’čuk I. Levels of Dependency in Linguistic Description: Concepts and
Problems // Agel V., Eichinnger L., Eroms H.-W., Hellwig P., Herringer H. J., Lobin H.
(eds.). Dependency and Valency. An International Handbook of Contemporary Re-
search. Vol. 1. Berlin; New York: W. de Gruyter, 2003. P. 188—229.

Mel’čuk, Pertsov 1987 — Mel’čuk I., Pertsov N. Surface Syntax of English. A Formal
Model within the Meaning-Text Framework, Amsterdam: Benjamins, 1987.

Milićević 2007 — Milićević J. La paraphrase — Modélisation de la paraphrase langagière.
Bern: Peter Lang, 2007.

Osborne 2005 — Osborne T. Beyond the Constituent: A DG Analysis of Chains // Folia
Linguistica. 2005. 39. Р. 251—297.

Osborne, Groß 2012 — Osborne T., Groß T. Constructions are catenae: Construction
Grammar meets Dependency Grammar // Cognitive Linguistics. 2012. 23 (1). Р. 163—
214.

Polguère 1990 — Polguère A. Structuration et mise en jeu procédurale d’un modèle
linguistique déclaratif dans un cadre de génération de texte. Thèse de doctorat.
Université de Montréal, 1990.

Pollard, Sag 1994 — Pollard C., Sag I. Head-driven Phrase Structure Grammar. Chicago
University Press, 1994.

Sangati 2012 — Sangati F. Decomposing and Regenerating Syntactic Trees. PhD thesis.
University of Amsterdam, 2012.

Tesnière 1959 — Tesnière L. Éléments de syntaxe structurale. Paris: Kincksieck, 1959.

